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Abstract 

Traditional switching regression methods produce slope and intercept estimates conditional on the change point 
estimate, with confidence intervals that overstate their precision. This paper describes the problem and a bootstrap 
alternative. Extensive sampling experiments confirm that the traditional methods overstate precision, and that 
bootstrap confidence intervals are far more accurate. 
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1. Introduction 

Applications of switching regression models are widespread in the recent empirical 
literature, inspired in part by recent advances in econometric theory and method. Much of the 
theoretical work, in articles such as Andrews (1993), has focused on obtaining optimal test 
statistics for parameter stability. This theoretical work is technically impressive and very 
useful, but it leaves some questions unanswered. For example, the applicability of asymptotic 
results to a finite sample, and the implications and validity of theoretical assumptions used in 
the proofs, is often unclear. Also, it is unclear how to extend the analytical results beyond the 
issue of testing for parameter stability. 

In particular, the theoretical literature has largely ignered interval estimation for slope and 
intercept parameter estimates. Currently available techniques first estimate the location of the 
switch point, then calculate the regression slope and intercept parameters conditional on that 
location, As if the switch point were known with certainty. The results therefore overstate the 
precision of the slope and intercept estimates, and their naive use leads to faulty inference. 

Theoretical work in this area has long been hampered by the intractability of the 
mathematics of the switch point estimator's distribution. Computation-intensive techniques 
such as the bootstrap complement theory because they use different assumptions, they are 
often more robust to small changes in the model or technique, and they may have better 
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small-sample properties than methods based on asymptotic theory. Econometricians are 
making increased use of the bootstrap; see Jeong and Maddala (1993) and Vinod (1993) for 
analytic summaries of the literature. This paper provides evidence that the bootstrap can 
provide information about the timing of the regime switch, and that it can improve inference 
by accurately estimating the precision of regression parameter estimates. 

This is not the first paper to use the bootstrap on the switching regression model. However, 
it is the first to explore the use of bootstrap confidence intervals of switching regression slope 
and intercept parameters. Douglas and Guiikey (1995) look at bootstrap standard errors in 
switching regressions, but they do not examine the much more interesting question of 
confidence intervals. Christiano (1992) i~resents a bootstrap test for a break in the trend in 
GNP. He does not consider interval or standard error estimators for parameter estimates, 
however, and his technique uses residuals generated under the null hypothesis of parameter 
stability. Hinkley and Schechtman (1987) use the 'conditional' boostrap to estimate the 
distribution of the switch point estimator. Their technique is far more expensive computation- 
ally than the technique under consideration in this paper, and its applicability to the 
unconditional distributions of ÷ and/3 is unclear. 

The paper is organized as follows. Section 2 describes the characteristics and problems of 
switching regressions estimation techniques in more detail, focusing on the least squares 
switching estimator. Section 3 describes the bootstrap approach to solving these problems. 
Section 4 presents the results of some Monte Carlo experiments, and Section 5 concludes. 

2. Switching regressions methods 

Ouandt (1958) introduced the simple switching regression model with an unknown switch 
point to the econometrics literature. The model assumes a structural shift at some unknown 
point in the data set. If y~ and e d are scalars, x, is a 1 x k vector, and/3~ and/32 are k x 1 
vectors, then the model with one switch point is 

Y~-x~O I + ~ ,  i = l , . . . , ~ ' ,  

y,=xJ3~+t, i=T+I , . . . ,T .  (1) 

The switch point, ~., is the number of the last observation in the first regime, and is unknown. 
Its estimate, ~, is obtained by optimizing an objective function (e.g. minimizing the sum of 
squared residuals, or maximizing likelihood, or satisfying a moment restriction) separately for 
each reasonable value for ~'. See Andrews (1993) for a 'partial-sample generalized method of 
moments' estimator that includes least square~ (LS), maximum likelihood, and many others as 
special cases. Any such grid search for ~ will provide no interval estimates of ÷ and will 
provide interval estimates for/3~ and/32 that are conditional on the value of ÷. 

A few researchers have analyzed the distribution of the switch point estimator ~ in a 
regression model. Kim and Siegmund (1989) use the distribution of the likelihood ratio test 
statistic to derive confidence intervals for the switch point in a single equation linear regression 
model. Bai et al. (1991), following Picard (1985), derived asymptotic confidence intervals for 
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the switch point estimator in a system of equations with stationary endogenous variables and 
regressors and a possibly changing intercept. (Asymptotic results are based on ~'/T constant as 
T---> ~.) These theoretical works, including Andrews (1993), agree that the moments of ÷ - z  
are all asymptotically O(1), and therefore ~'/T is consistent although ÷ is not. Also, the 
precision of ÷ increases with information about ~; that is, precision increases as the variance of 
the regression error e decreases, and as the magnitude of the parameter change increases. 

For finite samples, ÷ and the slope and intercept estimator /3--[/3' 1 /3~]' are not 
independent, since a change in ÷ changes the set of observations used to calculate /3. 
However, because the moments of ,~-~- are all asymptotically O(1), asymptotically the effect 
of changes in ÷ on /~ becomes negligible. Therefore, the LS switching estimator, /3, is 
consistent, and the asymptotic covariance of X/T(/~ - /3 )  is asymptotically the same whether or 
not ~" is known. But for finite samples, conditional ML or LS variance estimates for /3 are 
biased downward, resulting in confidence intervals that are 'too tight'. To see this, look at the 

A 

variance decomposition of fl~; 

Var(/3,) =VardE(/3~ I÷)1 + E~[Var(/~, I÷)1, (2) 

SO 

E÷[Var(/311 ~)] = Var(/3, ) - Var ÷[E(/3~ I ÷)], <3) 

where E~ and Var~ are the expected value and variance with respect to the marginal 
distribution of ÷. The traditional covariance matrix of/3 is calculated conditional on ÷, and 
therefore estimates the left-hand side of (3), but the left-hand side of (2) is needed for 
inference on/3. The more sensitive E(/~l I÷) is to changes in ÷, and the greater the variability 
of ÷, the greater will be the second term on the right-hand side of (3), and hence the greater 
will be the downward bias of Var(/~ I÷) as an estimator of Var(/3~). The larger this downward 
bias, the larger will be the discrepancy between the nominal and actual coverage of 
conditional confidence intervals based on the t distribution. 

3. Bootstrapping 

Despite recent progress, current techniques do not provide accurate small-sample interval 
estimates of ~ and /3. Bootstrap resampling techniques provide an attractive alternative for 
producing asymptotically correct confidence intervals and standard error estimates with 
superior small-sample properties. The basic insight of bootstrap resampling is that if a sample 
is a reasonable representation of the population, then repeated random resamples from that 
original sample are a reasonable representation of repeated samples from the population. 
Several techniques exist for bootstrapping regressions, discussed in Efron (1982), Freedman 
(1981), Wu (1986), LePage and Billard (1992), and Hall (1992). Bootstrapping the switching 
regression model requires a straightforward extension of these regression techniques. 

First, estimate/31,/32, and ÷ in the usual way, and then calculated the "~ x 1 residual vector 
e 1 from regime 1 and the ( T - ÷ )  x 1 residual vector e 2 from regime 2. Then, to equate the 
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variances of the residuals and true errors, rescale the residuals by multiplying e t by 
~/~/( '~-k) ,  and ee by ~ / ( T - ~ ) / ( T - ~ - k ) ,  where k is the number of regressors. Sample 
times with replacement from the rescaled vector e 1 to get the ~ × 1 bootstrap sample vector 
el , and sample ( T - ' ~ )  times with replacement from the rescaled e2 to get the bootstrap 
sample vector e2 • Now create the bootstrap 'pseudodata' sample y*~ 

~,i ' i t§ + e * t  . 

re,'1 
+ Le '/ 

In the first bootstrap iteration, re-estimate the model using the original matrix of regressors x, 
* !  - ~ * 1  - ^ * 1  

but with y , t  substituted for y, to get bootstrap estimates fit , /32 , and r . Repeat the 
process some large number B times. On each iteration, resample from the original e t and e 2 
some large number B times, and on each iteration recalculate a new pseudodata vector  y ,b ,  
b = 1 , . . . ,  B. Regress each y,b on x to obtain B bootstrap estimates /~,bi, /32'b, and ÷,b 
b--  I , . . . , B .  t 

Given the B bootstrap parameter estimates, the bootstrap standard error of an estimator d 
is 

1 ~ (~,b _ ~, ')2 , (4) 
STD*(I~) = B -  1 b--, 

where ~*" is the average of the B bootstrap estimates ~,b. Of greater practical interest, 
however, is the bootstrap confidence interval. There are many alternative ways to calculate 
bootstrap confidence intervals (see Hail, 1992, for a summary of methods). The method with 
the strongest basis in statistical theory is the 'percentile' method and its various refinements. 
In general, a one-sided lower interval with confidence level a is bounded by c,,t. such that 

Pr(O <6 +c,L} = a .  (5) 

To apply the percentile method, replace 0 with 0, and replace 0 with the bootstrap estimate 

+C.L} = a ,  (6) 

leading to the estimator c,,L, which is the distance from 0 to the 1 - a  percentile of 0". The 
resulting one-sided lower confidence interval is 

i Other corrections are necessary if e is not i.i.d., or y follows an ARIMA process. For example, if e follows an 
ARMA process, then various 'moving block' bootstrap methods may be used to calculate the/3" matrix (see Lahiri, 
1992). Wu (1987), and comments thereafter, suggest corrections for heteroskedasticity. There is also a large 
literature, e.g. Rayner (1990), on bootstrapping when y follow an ARIMA process. See Jeong and Maddala (I993) 
for a summary. 
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= ( - o o ,  6 + 

The corresponding one-sided upper confidence interval would be l~v = (0 - c , u ,  oo), where t?,, u 
is the distance from 0 to the a percentile of ~*. 

The literature describes several methods for creating two-sided percentile confidence 
intervals. One method, sometimes referred to as the 'equal tail percentile method', constructs 
the two-sided a confidence interval as the intersection of the upper and lower (1 + a) /2  
confidence intervals: 

1.2 = ( 6  - + • (7) 

This method produces intervals that are equally likely to lie above or below the true 
parameter. 

Percentile-t bootstrap confidence intervals represent a refinement of the percentile method, 
achieved by transforming the estimator 0 into a pivotal statistic. A pivotal statistic is one 
whose distribution is (asymptotically, at least) not dependent upon unknown parameters. 
Under general conditions, percentile-t confidence intervals are more accurate than percentile 
confidence intervals for asymptotically normally distributed statistics such as/~.2 To create a 
percentile-t confidence interval for a switching regression slope or intercept regression 
parameter j ,  regime k, ~kj, first 'studentize': 

, b  
, j  - 

^ , b  
or ok j 

( 8 )  

where ~kj is the estimate based on the original data set, and fl~; and &~'j are the bth 
bootstrap iteration estimate and its standard error. Now calculate confidence intervals using 
percentiles of (8), and with the intervals 

A A A A ~ ,  

Jot2 -" ( ~ k j  --  O'13kjC(l+a)12.U ' ~k j  "~" OrokjC(l+a)/2.L) ' (9) 

where drt% is an estimate of the standard error of /3kj, preferably the bootstrap estimator 
calculated as in (4). Note that ~.,b (unlike 6ra,j) must be calculated separately for each #kj 
bootstrap iteration b. The conditional LS standard error estimator may be used for 6" *b #kj 
despite its small-sample bias, since a statistic need only be asymptotically pivotal to have 
desirable properties, a 

2 In general, the percentile-t provides improvement over the percentile (reducing coverage error by a factor of 
T-~2) when the estimator 0 is a sufficiently smooth function, and when there is a stable estimator of the standard 
error. See Hall (1992) for assumptions used in proofs. Wu (1986) and Lahiri (1992) discuss properties for more 

general models. 
3 Alternatively, at considerable computational cost, 6~*b may be estimated using the iterated bootstrap. 
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4. Sampling experiments 

I tested the performance of the bootstrap using an extensive set of sampling experiments. 
Each experiment used 1000 Monte Carlo repetitions and 200 bootstrap repetitions, with 
regressors taken from a uniform distribution and errors from a normal distribution. The main 
performance criterion is the coverage ratio of the confidence intervals (i.e. the percentage of 
Monte Carlo repetitions in which the confidence interval contains the true parameters). 

Table 1 shows specific results for the switch point and regime 1 slope estimators in six 
different sampling experiments. (Results for the other slope and intercept estimators are 
qualitatively identical, and are omitted for brevity.) The first four lines of the table detail the 
characteristics of each model, with the differences from model A shown in italics. Standard 
error estimates are low, but bootstrap estimates outperform conditional estimates, and slope 
estimates outperform switch point estimates. Bootstrap standard errors are more accurate 
where the number of observations T is large (experiment B) or the switch is well-defined 
owing to large parameter change (experiment D) or low error variance (experiment F). 

Bootstrap slope parameter confidence intervals performed well across the board, both 
absolutely (i.e. their coverage is close to the nominal confidence interval of 95%), and in 
comparison with their conditional counterparts. Despite their theoretical advantage, tile 
percentile-t confidence intervals did no better than the percentile intervals. Bootstrap switch 
point confidence intervals show consistently low coverage, however, and were outperformed 

Table 1 
Monte Carlo results for basic experiments 

Experiment A mcstd ~ B mcstd C mcstd D mcstd E mcstd F mcstd 

Number of observations 100 500 100 100 100 100 
1"/T 0.5 0.5 0,7 0.5 - -  0.5 
B~/B~ 1.5 1.5 1.5 2 1 1.5 
Std(~) 5 5 5 5 5 1 

Switch point r 50 250 70 50 50 
Benchmark h std 12,1 15,6 14,7 4.32 20.2 

Bootstrap std 10,3 3,08 13.0 4.76 11.2 3.8 4.04 !.40 16.1 2. 9 

~" Coverage (a = 0,95) 
Percentile 0,745 0.947 0,687 0.904 
Normal ~ 0,884 0,930 0.850 0.915 

Regime 1 Slope B 8 
Benchmark ~' std 3,31 
Bootstrap std 3,11 
Conditional std 2,62 

B Coverage (a = 0,95) 
BS percentile 0,942 
BS percentile-t 0,945 
Conditional 0,896 

8 8 8 8 
1.12 3.05 2.86 4.50 

0.594 1,10 0.085 2,88 &683 2.69 0.361 3.69 O. 791 
0.465 1,09 0.058 2.37 0.507 2.57 0.288 2.82 O. 798 

50 
0.971 
0.940 0.236 

0.862 
0.930 

8 
0.543 
0.520 0.060 
0.516 0.054 

0,950 0.939 0.923 0.904 0.936 
0,948 0,937 0.930 0.898 0.939 
0,946 0,891 0.910 0.796 0.933 

'mcstd' is the standard error of the standard error estimate over the Monte Carlo experiment. 
b The benchmark std is the standard error of the statistic over 10,000 independent Monte Carlo repetitions. 

'Normal' confidence intervals for ~ were generated by multiplying the bootstrap standard error by 1.96. 
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by theoretically baseless 'normal' confidence intervals. 4 Again, the bootstrap performed better 
in the 'high information' experiments B, D, and F. 

Table 2 summarizes the performance of bootstrap and conditional confidence intervals in 
163 Monte Carlo experiments. Column 2 lists the sample mean and standard deviation of 
coverage over the 163 experiments. Again, bootstrap confidence intervals for the slope 
parameter performed very well, with little difference between the percentile and percentile-t. 
Confidence intervals for ~- and conditional confidence intervals for /3, on the other hand, 
exhibited average coverage well below the nominal 95%, and high variability in coverage. 

Columns 3-9 of Table 2 contain results of four regressions that use the coverage ratios as 
dependent variables. The coefficient estimates show how coverage of each estimator varies 
with the amount of parameter change/32//3 ~, the variance of the error term try, and first and 
second powers of the inverse of the square root of the number of observations T and the 
number of bootstrap repetitions B. (The response surface regression equation may be 
interpreted as a stochastic expansion of the estimates in powers of T '~/'. As such, the 
coefficients of T -~/2 and T -~ indicate skewness and kurtosis, respectively.) Because coverage 
in virtually all 163 experiments lay below 95%, a positive coefficient indicates that coverage 
error decreases as the value of the corresponding variable rises. The adjusted R 2 for the 
bootstrap/3 regressions is much lower than in the other two regressions, indicating that the 
bootstrap/3 intervals perform nearly as well in small samples and noisy data as they do under 
better conditions. Results for/32//3 ~ and o-~ also indicate that both the ~" and conditional 
intervals improve as the switch is better defined, but the bootstrap intervals for/3 show !ess 
improvement, since they already take into account the additional variability of/~ induced by 
uncertainty of ÷. 

The performance of all estimators improves when the change in the regression parameters 
/32//3 t increases or the error variance tr~ decreases. Performance also improves uniformly for 
all estimators as T increases. Somewhat surprisingly, the regression results show no significant 

Table 2 
Response surface results: Coverage of 95% nominal confidence intervals (Cls) 

Dependent Variable: AVg lntrcpt /3 2//3, ~ T ~ t,2 T- i B - i/2 B - i 
covg 

• , Percentile CI coverage 0.793 0.974* 0.210" -0 .041 '  -4.39* 7.30 0.940 -5 .23 
ad j  R 2 = 0.81 std 0.126 0.106 0.035 0.(1(122 1.31 6.70 1.33 8.83 

/~, Percentile C! coverage 0.940 0.940* -(I.017" 0.00007 1.27" -8.83* -0.266 1.43 
adj R 2 = 0.47 std 0.017 0.024 0.008 0.0005 0.293 1.50 (}.299 1.92 

/3, percentile-t C! coverage 0.941 0.959* -0.0018 -0.002* 0.425 -3.71 * -0.35(} 2.14 
adj R 2 = 0.33 std 0.013 0.022 0.007 (}.0004 0.265 1.36 0.271 1.79 

/3, conditional CI coverage 0.905 0.981 * 0.034* -0.009* -0.922* -0.053 
adj R 2 = 0.77 std 0.032 0.27 0.011 0.0007 0.428 2.18 

"*"  indicates significance levels better than 5%. 

4 No te  tha t  Bai et  a l . ' s  (1991) analy t ic  conf idence  intervals  for  ÷ also exhibi t  coverage  ra t ios  significantly smal le r  

t h a n  the i r  nomina l  conf idence  level. 
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effect of increasing the number of bootstrap repetitions B, indicating that the smoothness of 
the bootstrap approximation may not be a major issue. (The set of experiments included 24 
runs of experiment A, with B varying between 50 and 1000.) A look at the raw data, however, 
shows improvement as the number of bootstrap repetitions increases from 50 to 250, but no 
consistent pattern as B rises from 275 to 1000. A conservative approach to estimation 
therefore would use at least 300 bootstrap repetitions. 

5. Summary and conclusions 

This paper describes a problem with estimators in the switching regression model, suggests a 
bootstrap alternative, and evaluates bootstrap confidence intervals using a large set of 
sampling experiments. By taking into account the effect of the uncertainty of ÷ on the 
precision of the coefficient estimates, the bootstrap provides accurate confidence intervals for 
the regression parameter estimates. In particular, both established theory and the sampling 
experiments reported here suggest that percentile-t method provides accurate confidence 
intervals that represent a real improvement over previous methods. 

~or the switch point, the performance of the bootstrap confidence intervals is less 
impressive. One possible avenue for improved performance suggested by the literature is the 
iterated bootstrap, in which a second bootstrapping procedure is performed on the residuals 
from each bootstrap iteration. The second bootstrap can be used to prepivot switch point 
estimates, either by providing standard errors for studentization, or by the inverse distribution 
f~anction method recommended by Beran (1987). Of course, the cost in terms of computation 
time is considerable, but that cost should continue to decline quickly over time. However, in a 
small set of Monte Carlo experiments (not reported here), the iterated bootstrap showed no 
promise. Beran's technique created confidence intervals with even lower coverage than the 
single-iteration method reported here, and studentization methods provided marginal or no 
improvement. The best alternatives at present appear to be the single bootstrap method or, if 
your model and data are appropriate, the asymptotic results in Bai et al. (1992). Results from 
either method should be treated with caution, and most likely will produce intervals that 
underestimate the variability of ÷. 
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